

"Modelado de Radiación UV en fotorreactores"

Solar Safe Water 2005, Iguazú. <u>Navntoft Christian</u>, Blesa Miguel A., Dawidowski Laura E. Comisión Nacional de Energía Atómica

Explicar la atenuación de la radiación UV a través de su paso por la atmósfera
Mostrar métodos sencillos de estimación de la radiación UV a nivel de la superficie terrestre
Descripción de software existente
Estimación sencilla de la radiación UV que llega a los fotorreactores del tipo SOLWATER.

Radio del Sol: 696.000 KM Radio de la Tierra: 6382 KM Distancia Media Sol Tierra: 150.000.000 KM Radiación en la superficie del Sol: 60.000 Kw/m2 Constante Solar: 1367±7 W/m

Radiación Solar

Espectro Electromagnético

 •El 98% de ella en la zona ubicada entre los 0,3 μm y los 4 μm de acuerdo a la siguiente composición aproximada:

Ultravioleta <0,4 μm	8%
Visible >0,4μm y <0,7μm	41%
Infrarojo >0,7µm	51%

Radiación Solar UV

Para su estudio, la radación UV se divide arbitrariamente en tres rangos: •UV-A (320-400nm) •UV-B(280-320nm) •UV-C(100-280nm)

Las longitudes de onda de interés para fotocatálisis son las que comprenden el UV-A y el UV-B. Las últimas son de gran interés de estudio por sus efectos sobre los seres vivos y los contaminantes atmosféricos. Los rangos de las mismas pueden diferir en ± 5 nm, dependiendo del autor.

Atenuación en la atmósfera

<u>Absorción</u>: Los fotones son transformados en energía química o calor. Choque inelástico.

Dispersión: Los fotones son redistribuídos sin pérdida de energía. Choque elástico.

Fenómenos de interés para el UV

Absorción por el ozono estratosférico
Dispersión por las moléculas de aire
Absorción y dispersión por los aerosoles
Dispersión por nubes

Para describirlos es necesario saber su distribución atmosférica y las interacciones entre ellos.

Absorción por el ozono

Reacción quimica:

O₂+ hν (λ<242 nm) = 20•

 $O_{2+}O = O_3$

¿Porqué el 90% del Ozono está en la estratósfera?

La absorción por el ozono sigue la ley de Beer-Lambert:

 $\frac{I}{I^o} = e^{\frac{-\tau(\lambda,z)}{\cos\theta}}$

$$\tau(\lambda, z) = \sigma(\lambda) \cdot n \cdot z$$

 $\sigma(\lambda)$, es la sección eficaz de absorción, particular de cada gas(cm²).

n, la densidad numérica del gas (molec/cm³)

Z, es el espesor de la capa del gas (cm)

Absorción por el ozono

Cuando la densidad numérica del gas varia con la altura, la profundidad óptica se define como:

$$\tau(\lambda, z) = \sigma(\lambda) \cdot n \cdot Z$$

Y Z (molec/m²) se define como: $Z = \int n \cdot dz$

Para el ozono, la equivalencia entre Unidades Dobson y densidad numérica es:

1 UD=2.69x10²⁰ molec/m²

λ(nm)	<i>θ</i> =15°	<i>θ</i> =30°	<i>θ</i> = 45°	<i>6</i> =60°	<i>θ</i> =75°	<i>0</i> =90°
280	0.00	0.00	0.00	0.00	0.00	0.00
290	0.00	0.00	0.00	0.00	0.00	0.00
300	0.06	0.05	0.02	0.00	0.00	0.00
310	0.49	0.45	0.38	0.25	0.07	0.00
320	0.80	0.78	0.73	0.65	0.43	0.00
330	0.97	0.96	0.95	0.94	0.88	0.00
340	0.99	0.98	0.98	0.97	0.95	0.00
350	1.00	1.00	1.00	1.00	0.99	0.00

Como muestra la tabla, el ozono modula básicamente el UV-B, mientras que en el UV-A pesan más los aerosoles.

<u>Dispersión por el aire (Rayleigh)</u>

Puede modelarse también a través de Beer-Lambert utilizando una sección eficaz de dispersión:

Para el caso del aire, esta sección eficaz (cm²) puede calcularse mediante:

> Donde λ se expresa en μ m y x tiene la expresión: $x = 3,916 + 0,074 \cdot \lambda + \frac{0,050}{2}$

De 0 metros a tope de atmosfera hay **2.15 x 10²⁹ moleculas de aire por m**².

 $=\frac{3,90\times10}{\lambda^{x}}$

 $\sigma_{_{aire}}$

Dispersión por el aire (Rayleigh)

Aproximadamente, la radiación es redistribuída de tal manera que un 50% sigue en la dirección del haz incidente y el otro 50% es redireccionada hacia atrás.

Sigue siendo aplicable la ley Beer-Lambert.

La profundidad óptica para los aerosoles está dada por a ley de Angstrom:

$$\tau = \beta(\lambda)^{-\alpha}$$

 β , se denomina coeficiente de turbidez y toma valores entre 0 y 0,5. Siendo el mas frecuente 0,15. Está relacionado con la cantidad de aerosoles que hay en la atmósfera.

 α, denota el tamaño y el origen de los aerosoles, toma valores entre 0 y 4; siendo el más frecuente1,3.

De la irradiancia que es interceptada por los aerosoles, una fracción es absorbida y otra dispersada. El albedo de dispersión simple(ω) es el que caracteriza la importancia relativa de cada proceso:

$$\omega_o = \frac{\sigma_d}{(\sigma_d + \sigma_a)}$$

Toma valores de 0 para absorcion pura y 1 para dispersion pura.

El patrón de redireccionamiento de la radiación está dado por el factor de asimetría g. El mismo describe la direccionalidad de la radiacion dispersada

$$g = \frac{1}{2} \int_{1}^{+1} P(\Theta) \cos\Theta d(\cos\Theta)$$

Los valores que toma <u>c</u> son: -1 para dispersion total hacia atras y +1 para dispersion total hacia adelante.

Valores tipicos de aerosoles estan entre 0.6 y 0.8

Atmósfera	β	Cl	Visibilidad(km)
Limpia	0,0	1,30	340
Clara	0,10	1,30	28
Turbia	0,20	1,30	11
Muy turbia	0,40	1,30	<5

Funciones de fase (g)

Valores de los parametros de Angstrom.

Albedo superficial

•Se define el albedo superficial como la razón de la radiación reflejada sobre la radiación incidente

Tipo de Superficie	Albedo (%)
Agua Líquida	5-10
Nieve Limpia	30-100
Nieve Sucia	20-95
Hielo	7-75
Arena desértica	4
Asfalto	4-11

<u>Expresión final para la irradiancia</u>

$$F_{(\lambda)} = F_{ET(\lambda)} \cdot \left(\lambda, \theta, T_{O_3}, T_{AIRE}, T_{AEROSOLES}, A\right)$$

Fet(λ)	=Irradiancia solar extraterrestre en W/m2
T _{O3}	=Transmitancia del ozono
T _{AIRE}	=Transmitancia del aire
T_{AEROSOLES}	= Transmitancia de los aerosoles
Α	=Albedo superficial

Expresión final para la irradiancia

Ecuación de transferencia radiativa

$$\cos\theta \frac{dI(\tau,\theta,\phi)}{d\tau} = -I(\tau,\theta,\phi) + \frac{\omega_0}{4\pi} F_{\infty} e^{-\tau/\cos\theta_0} P(\theta,\phi,\theta_0,\phi_0) + \frac{\omega_0}{4\pi} F_{\infty} e^{-\tau/\cos\theta_0} P(\theta,\phi,\phi_0,\phi_0) + \frac{\omega_0}{4\pi} F_{\infty} e^{-\tau/\cos\theta_0} P(\theta,\phi_0,\phi_0) + \frac{\omega_0}{4\pi} F_{\infty} e^{-\tau/\cos\theta_0} P(\theta,\phi$$

$$\frac{\omega_0}{4\pi} \int_{0}^{2\pi} \int_{-1}^{+1} I(\tau, \theta', \phi) P(\theta, \phi, \theta', \phi') d(\cos\theta') d\phi'$$

Atenuacion por absorcion y dispersion

Dispersion de la radiacion difusa Dispersion de la radiacion solar directa

Transferencia radiativa

Para un superficie plana como un fotorreactor de placa plana, la ecuacion se reduce a:

$$F = F_{dir} + \int_{0}^{2\pi 1} \int_{0}^{1} I(\theta, \phi) \cos\theta \, d(\cos\theta) d\phi$$

Radiacion directa

Radiacion difusa

Modelo TUV 4.1

Varios modelos que estan en internet brindan soluciones empaquetadas a la ecuacion de transferencia radiativa.

De entre ellos uno de los mas evaluados es el que aqui se presenta. Fue evaluado mundialmente y el mismo presenta un certeza del 95% al mediodia solar, siempre y cuando los parametros ingresados sean correctos.

Datos de entrada:

- Latitud y longitud
- ≻Fecha, dia
- >Altura sobre el nivel del mar
- Espesor optico (0-1), coeficiente alfa (1.3) y albedo de dispersion simple de aerosoles(0,98)
- Columna total de ozono (200-300 DU
- >Elvalor de g viene predeterminado en 0.7

- Obstaculos a sortear antes de llegar al fotocatalizador o fotosensibilizador:
- ≻Sombras
- ➢Reflexiones en espejos
- ≻Tubos de vidrio
- Compuestos organicos en solucion
- Compuestos organicos adsorbidos

Transmitancia	UV-B=45%	UV-A=86%
tubos de vidrio		
Reflectancia CPC alumnio	86%	86%
Longitud total de tubos	1.20 m	1.20 m
Longitud expuesta al sol	0.975 m	0.975 m
Diámetro del tubo	0.05 m	0.05 m
Diámetro del soporte	0.032 m	0.032 m

<u>Radiación en fotorreactores</u>

Cálculo área equivalente $Ae = LT \cdot TV \cdot [DT + (S - DT) \cdot R]$

LT = Longitud del tubo TV = Transmitancia del vidrio DT = Diametro del tubo S = Area del CPC R = Reflectancia de los espejos

Area equivalente UV-A:

Ae(UVA)= 4 · 0.975 · 0.864 · [0.05+(0.157-0.05) · 0.86]=0.4784 Area equivalente UV-B: Ae(UVB)= 4 · 0.975 · 0.428 · [0.05+(0.157-0.05) · 0.86]=0.2370

> Ae(UVA)/Area Total = 0.4784/0.6094 = 0.7850 Ae(UVA)/Area Total = 0.2370/0.6094 = 0.3889

El 78% de la radiacion UVA y el 39% de la radiacion UVB llegan al semiconductor, siempre que los compuestos en solucion no absorban radiacion en estas longitudes.

